Optimal taxation in the face of restrictions on the government budget deficit

Christian Ghiglino2 and Karl Shell3

2 Department of Economics, Queen Mary, University of London, Mile End Road, London E1 4NS UK, c.ghiglino@qmul.ac.uk \textit{and} Department of Economics, University of Bern, Gesellschaftsstrasse 49, 3012 Bern, Switzerland. e-mail: christian.ghiglino@vwi.unibe.ch

3 Department of Economics, 402 Uris Hall, Cornell University, Ithaca, NY 14853-7601 USA, ks22@cornell.edu

Received:

Revised:

Date: October 23, 2004

Summary. In the present paper we focus on how a benevolent government would react to a change in the budget deficit restriction. When financial markets are perfect, anonymous lump-sum taxes are sufficient to achieve irrelevance and the maximal attainable welfare is unaffected by the change in the restriction. With imperfect consumer credit markets welfare irrelevance may not hold. In a pure exchange economy we show that irrelevance still holds in the presence of endogenous credit constraints provided there exists a sufficiently large number of anonymous consumption taxes. In productive economies, the conditions for welfare irrelevance are much more difficult to obtain. If production is perfectly smooth, allocation and welfare irrelevance usually does not hold, and a reform in the GBDR is expected to have a real effect on the economy. On the other hand, exact welfare irrelevance may be achieved if some inputs are non-substitutable or some consumption goods are supplied as endowments. However, even when all inputs are substitutable the optimal reaction of the government is expected to include consumption taxes.

Keywords: Optimal taxation, Balanced-Budget Amendment, Consumption Taxes, Endogenous Credit Constraints, Government Budget Deficit Irrelevance, Lump-sum Taxes, Heterogeneous Consumers. Smooth Production.

JEL-classification numbers: D50, D90, E52, E60, H62, H63.

1We thank XX for helpful comments.

Correspondance to: C. Ghiglino
1 Introduction and summary

In the present paper we consider the following two related issues: 1) How the welfare maximum is affected by a change in the government budget deficit restriction? and 2) How the composition of the optimal tax scheme is affected by the reform? Anonymous consumption taxes are typically used in order to reach a welfare maximum because of their redistributive power. When consumers face no borrowing constraints, anonymous lump-sum taxes are sufficient to neutralize the effect of any change in the government budget deficit restriction so that the use of consumption taxes is not affected by the reform. However, one can suspect that the existence of individual borrowing constraints generates an additional scope for consumption taxes. To qualify this suspicion is the aim of the present paper.

We adopt an intertemporal deterministic model with heterogeneous agents. We do not exclude lump-sum taxes and transfers as often assumed by the literature. In this regard we follow what has been called the “Mirrlees approach”: taxes are only limited by informational limitations. Consequently, we assume that taxes cannot be individual specific although the distribution of the heterogeneous agents is known. We also assume for simplicity that each commodity can be taxed at its own rate. In the model, private credit markets are imperfect in the sense that consumers can only borrow up to the present value of their future endowments in the physical commodities that can be used as collateral. The other assumptions are more or less standard, as the fact that individuals are completely rational in the sense that they use perfect forecast and that the cost of administration of the tax schedule is negligible. Finally, there is a government that produces a public good purchasing the necessary inputs from the producers. However, we assume that the government demand is exogenously fixed.

Within this framework, it turns out that in a majority of the relevant situations the optimal response of the government to a change in the government budget deficit restriction is to keep the allocation unchanged. The government budget deficit restriction is said to be irrelevant if the set of achievable equilibrium allocations is unaffected by the restriction. Otherwise, the restriction is said to be relevant. This notion of irrelevance is very strong as it applies to all government budget deficit restrictions. For example, even though it seems desirable, a completely balanced government budget is in many instances hardly realistic. There is a need to qualify situations in which the government budget deficit can be at least reduced if not entirely removed. As in Ghiglino and Shell [8], a government budget deficit restriction is said to be weakly irrelevant if it is irrelevant for restrictions that are “near to” the base-line deficit, i.e., only period-by-period deficits that are not too far from the baseline deficits are considered.

The main results of the paper are summarized below.

\[\text{2}\text{see Kocherlakota (xxxx).}\]
1. When financial markets are perfect, anonymous lump-sum taxes are sufficient to achieve irrelevance and the maximal attainable welfare is unaffected by the change in the restriction.

2. With imperfect consumer credit markets, welfare irrelevance may not hold if only anonymous lump-sum taxes are to be used. In a pure exchange economy weak irrelevance holds in the presence of endogenous credit constraints provided there exist a sufficiently large number of taxable commodities.

3. In productive economies, if technology is perfectly smooth allocation and welfare irrelevance usually does not hold and a reform in the GBDR is expected to have a real effect on the economy. On the other hand, exact welfare weak irrelevance may be achieved if some inputs are non-substitutable or some consumption goods are supplied as endowments.

Some remarks on these results are in order. First, why weak budget deficit irrelevance may require anonymous consumption taxes? With only anonymous lump-sum taxation, if taxes must be increased on the young in order to reduce the deficit, constrained consumers will typically have to decrease their early-life consumptions. This means that the deficit restriction is relevant. With anonymous consumptions taxes, the government will be able to accommodate local changes in the deficit restriction if there are sufficiently many types of commodities to tax. This is because, by altering tax rates, the government is able to affect early-life incomes, late-life incomes, and the rates of commodity substitution, while generating the necessary revenue.

Second, saying that the restriction is irrelevant is not saying that the restriction does not matter. If the restriction either directly or indirectly affects expectations in such a manner that it affects the selection of the equilibrium, then the restriction does matter. In case of economies with multiple equilibria, changing the tax scheme typically affects all equilibria. So, the tax may be optimal for one selection but not optimal for a different one. We then assume that the government always pick the best one (see Diamond (1982) and Keister and Hennis (2004)).

A third remark is that in standard smooth general equilibrium most of the results obtained for pure exchange economies can be extended with little difficulty to production economies. As summarized above, in pure exchange economies a sufficiently large number of consumption tax instruments ensures weak irrelevance. Introducing production is not innocuous because the prices charged by the producers for their outputs and those they pay for the inputs admit a unique normalization. Then all the relative prices on the revenue side of the individual budget constraint are fixed (because they can be normalized only once). However, the non-substitutability in some inputs produces the kind of kinks in the production possibility frontier that mimics a pure exchange economy. In fact, what matters for irrelevance is the number of non-substitutable inputs and the number of primary consumption goods.
Fourth, it may seem that a sufficiently rich tax and transfers scheme would achieve all goals: finance the production of the public good, relieve the consumers from their credit constraints and make the government budget deficit meet the restriction. This is not entirely true, though. Indeed, even when the number of tax instruments is sufficient the scheme could fail because of the lack of bonafidelity, i.e. money losing its value, or simply because the taxes are too large and lead to negative selling prices.

In the paper we mainly focus on the reaction of the government to a change in the GBDR. A different question concerns the composition of the optimal tax scheme for a given GBDR. The need for redistribution in order to achieve a welfare maximum in a framework with anonymous tax instruments seems to call for consumption taxes. In fact, the standard Ramsey intuition is that the deadweight losses are close to zero for any marginal dollar risen by taxation, so that at the optimum all tax rates are non zero.

In the model we consider only consumption taxes so that production is always efficient. Introducing other types of taxes may destroy production efficiency. The literature has focused on factor and intermediate goods taxation. On the one hand, the Diamond and Mirrlees (1971) result can be extended to intertemporal economies. However, the existence of heterogeneous consumers and borrowing constraints invalidates the result of no taxation on intermediate goods. On the other hand, in infinite horizon economies the rate on capital income is zero at the steady state (see Chamley (1986)). However, in a finite horizon the optimal tax would have a small but non vanishing tax on capital income (see Chamley (1997)). These results indicate that inefficiency is likely to arise in the model when taxes other than on consumption and lump-sum are introduced. In the last section of the paper, we analyze how the results are affected by this change and show that the overall conclusions do not change much.

The present paper departs from Ghiglino and Shell [9] in several respects. First, the intent of the paper is different as here we focus on the optimal reaction (in welfare terms) of the government to a change in the BDR while in the previous paper we only considered allocation irrelevance. Second, we focus on economies with production, a fact that changes drastically the results. Third, the level of imperfection in the private credit markets is endogenous in the sense that consumers can only borrow up to the present value of their future endowments in the physical commodities that can be used as collateral. Finally, we employ a model with several consumers and several commodities per period but exclude generational overlap. Our irrelevance results are then stronger as in each period consumers have the same age and all taxes applied in a given period are identical.

As in our previous papers [8] and [9], the general mechanism for irrelevance is that individuals can be induced to borrow on behalf of the government. We do not let taxes depend on the state of the economy in previous periods, as proposed in Kotlikoff [11] or Bassetto and Kocherlakota [6]. Although this type of ”relabelling” is an important possibility, we believe that these are not feasible on a large scale.
The paper has the following structure. In Section 2 we introduce the model while in Section 3 we describe the fiscal policy. In Section 4 we define the equilibrium, in Section 5 we describe the welfare function while in Section 6 we define irrelevance. Our allocation irrelevance results for pure exchange economies are contained in Section 7 while the results for production economies are obtained in Section 8. Section 9 deals with the welfare analysis while Section 10 considers the case of taxes on factors of production and intermediate goods leading to production inefficiencies. The conclusion is confined to Section 11.

2 The Model

We employ an intertemporal model with heterogeneous agents extending over T periods. There are l perishable commodities in every period of which l_c are consumption goods. The l commodities are subdivided in l_o primary commodities and l_p produced commodities. It is assumed for simplicity that in a given period a commodity is either produced or is primary. By some abuse of notation, we note indifferently R^{l_o} the set of vectors with l_o coordinates or with l_o non-zero coordinates.

There are n agents living for T periods. The behavior of agent h ($h = 1, 2, \ldots, n$) is described by

$$\text{maximize } u_h(x_h^1, \ldots, x_h^T, g)$$

subject to

$$(p^s + \tau^s) \cdot x_h^s + x_h^{s,m} = p^s \cdot \omega_h^s + m^s + x_h^{s-1,m} + \delta(t-1)p^1 \cdot \sum_{j \in J} y_{j,1}^2 \theta_{i,j}$$

$$x_h^{s,m} \geq -\sum_{t=s+1}^{T} p_C^t \cdot \omega_{Ch}^t, s = 1, \ldots, T - 1$$

where $x_h^{s,m} \in \mathbb{R}$ is the gross addition to money holding in period s by consumer h. Let the share of agent h in the output of firm j in the initial period 1, $y_{j,1}^2$, be $\theta_{h,j}$, with $\sum_{i \in I} \theta_{i,j} = 1$. The Dirac function $\delta(t - 1)$ takes the value 0 for all t except when $t = 1$, in which case $\delta(0) = 1$. The utility function has the standard properties. In particular, it is twice differentiable with strictly positive first-order derivatives and with corresponding negative definite Hessian.

The remaining notation is as follows. $m^s \in \mathbb{R}$ is the lump-sum money transfer to a consumer in period s; if m^s is negative, then the consumer is paying a lump-sum tax. Following Ghiglino and Shell [8], $\tau^s_i \in \mathbb{R}$ is the present tax rate levied on a consumer on his consumption of commodity i in period s. Then $\tau^s = (\tau^s_1, \ldots, \tau^s_i, \ldots, \tau^s_l) \in R^{l_c}$ is the vector of anonymous consumption tax rates in period s for the consumers. We also define $m = (m^1, \ldots, m^T) \in R^T$, $\tau = (\tau^1, \ldots, \tau^T) \in R^{T\ell}$. Let $p^s = (p^s_1, \ldots, p^s_i, \ldots, p^s_{l+}) \in R^T_{++}$ be the
vector of present (before-tax) prices for commodities available in period s. The present after-tax vector of commodity prices facing consumers in period s is $p^s + \tau^s \in \mathbb{R}^n_+$. Let $x^s_h = (x^s_{h1}, ..., x^s_{hT}) \in \mathbb{R}^T_+$ be the vector of consumption in period s by individual h and $\omega^s_h = (\omega^s_{h1}, ..., \omega^s_{hT}) \in \mathbb{R}^T_+$ be the vector of endowments in period s of individual h for $s = 1, 2, ..., T$ and $h = 1, ..., n$. Finally, define the following quantity sequences: $x^s_h = (x^s_{h1}, ..., x^s_{hT}) \in \mathbb{R}^{1,T}_+, \omega_h = (\omega^s_{h1}, ..., \omega^s_{hT}) \in \mathbb{R}^{1,T}_+, x = ((x^s_{h1})_{h=1}^n), \omega = ((\omega^s_{h1})_{h=1}^n)$.

Some remarks are in order. First, we assume that the use of capital markets is constrained, viz. some individuals face constraints on their borrowing. In particular, we assume that for these consumers in each period borrowing should not exceed the present value of the future endowments in the commodities that can be used as collateral. Letting some physical goods play the role of collateral is standard. Of course, if all commodities can be used as collateral the consumer is not credit restricted. The borrowing constraint is not binding on consumer h if in equilibrium $x^s_{hm} > - \sum_{t=s+1}^{T} \tilde{p}^t_{C} \cdot \omega^t_{Ch}$ for $s = 1, ..., T - 1$. When x^m_{hm} is negative consumer h is borrowing in period s.

Second, we have implicitly assumed that for at least one consumer none of his borrowing constraints is binding. The usual no-arbitrage argument can then be used to establish that the present price of money is constant, i.e., $p^{s,m} = p^{s+1,m} = p^m \in \mathbb{R}_+$ where $p^{s,m} \in \mathbb{R}_+$ is the present price of money in period $s = 1, 2, \cdots, T$. Assuming that the economy is in proper monetary equilibrium, we can set $p^m = 1^3$. The nominal (coupon) rate of interest on money is assumed without loss of generality to be zero4. Hence the only return on holding money is the capital gain relative to commodities. Condition (2) is thus that money appreciate in value relative to any commodity at the commodity rate of interest.

Third, consumers for which the credit restriction is not binding face

$$\sum_{s=1}^{T} (p^s + \tau^s) \cdot x^s_h = \sum_{s=1}^{T} p^s \cdot \omega^s_h + m^s + p^1 \cdot \sum_{j \in J} y^2_{j,t} \theta_i,j$$

for $h = 1, 2, ..., n$. The transfers $m_t = (m^1, ..., m^T) \in \mathbb{R}^T$ affect the behavior of the consumer only through the lifetime transfer $\mu = \sum_{s=1}^{T} m^s \in \mathbb{R}$.

We now focus on technology. There are two types of firms. Firm j transforms inputs in period t, $y^j_{i,t} \in \mathbb{R}_+^j$, into outputs in period t or $t+1$, $y^2_{j,t} \in \mathbb{R}_+^j$ or $y^2_{j,t+1} \in \mathbb{R}_+^j$ depending on the type of the firm. The firms are called “intertemporal” and “infratemporal”. Without loss of generality and to avoid useless complexity we assume that infratemporal firms produce only consumption goods. Intertemporal firms are assumed to produce only non

3Strictly speaking, setting $p^m = 1$ is not without loss of generality. We know, however, that we can reconstruct the full set of perfect-foresight equilibria by using the absence-of-money-illusion property.

4This is because the super-neutrality of money.
consumeable goods that are only used as inputs by other firms. The net profits of firm j are as usual given by

$$p_0 \cdot y_{j,0}^2 + \sum_{t=1}^{T} (-p_t \cdot y_{j,t}^1 + p_{t+1} \cdot y_{j,t+1}^2 + p_{t+1} \cdot y_{j,t+1}^2)$$

where $((y_{j,t}^1, y_{j,t}^2, y_{j,t+1}^1)_{j \in J})^T_{t=1} \in R_{+}^{T_1} \times R_{+}^{T_2} \times R_{+}^{T_3}$ satisfies one of the two following relationships depending on the type of firm,

$$y_{j,t+1}^2 \leq F_j(y_{j,t}^1) \text{ and } y_{j,t}^2 = 0 \text{ or } y_{j,t}^2 \leq F_j(y_{j,t}^1) \text{ and } y_{j,t+1}^2 = 0 \text{ for all } t \text{ and } j.$$

Firms are assumed to maximize profits as defined above. This is equivalent to that firms maximize their instant profit because technologies display intertemporal separability. For example, firms of the intertemporal type are characterized by the following maximization problem

$$\max \quad -p_t \cdot y_{j,t}^1 + p_{t+1} \cdot y_{j,t+1}^2$$

$$\text{s.t. } y_{j,t+1}^2 \leq F_j(y_{j,t}^1)$$

We assume constant returns to scale so profits are zero at the optimum. Decreasing returns firms could be included at no additional cost provided the government can tax away the profits.

Standard general equilibrium analysis assumes strictly convex production sets. This convenient assumption automatically rules out the possibility to decompose the economy in separate disconnected set allowing for two independent price normalizations. However, as we focus on constant returns to scale technologies we need to assume non strictly convex sets. We then make the following assumption to rule out that the economy can be decomposed in blocs.

Assumption. Let I_j be the set of indices of inputs in period t used by firm j to produce an output in the same period t. Then we assume that for any pair j and j' there exist $j_1, j_2, ..., j_k$ such that $(I_j \cap I_{j_1}) \neq \emptyset$, $(I_{j_1} \cap I_{j_2}) \neq \emptyset$, ..., $(I_{j_{k-1}} \cap I_{j'}) \neq \emptyset$. We also assume that there is at least one firm using an input in period t to produce an output in period $t+1$.

3 Fiscal policy

We assume that the government has at its disposal anonymous lump-sum taxation and anonymous consumption taxation. In other words, we assume that lump-sum taxes and consumption tax rates must be the same for every consumers, but that consumption taxes can vary freely over the l_c consumable commodities. General consumer tax classes and more general commodity tax classes could also be considered (see Ghiglino and Shell [8]).
The government’s fiscal policy is the sequence of anonymous lump-sum transfers \(m \) and the sequence of consumption tax rates \(\tau \). Note that the taxes are on the transactions between the consumption sector and the production sector. Production is assumed to present no distortions, competition ensuring that the economy is on a point on the production possibility frontier. We will relax this assumption in the last section of the paper.

Let \(d^t \) be the present commodity value (and also the dollar value) of the government budget deficit incurred in period \(t \). Hence we have for the case of lump-sum taxation

\[
d^t = p^t g^t + nm^t
\]

for \(t = 1, 2, ..., T \) where \(n \) is the number of consumers. For the case with consumption taxes

\[
d^t = p^t g^t - \sum_{h=1}^{n} \sum_{i=1}^{l} \tau_{hi} x_{hi} + nm^t
\]

for \(t = 1, 2, ..., T \). Let \(d \) denote the sequence \((d^1, ..., d^{T-1})\). Let \(\delta^t \) be the present value (and money value) of the constitutionally imposed deficit restriction in period \(t \). Let \(\delta \) denote the sequence \((\delta^1, ..., \delta^{T-1})\). The budget deficit restriction is then

\[
d \leq \delta.
\]

According to the previous definition, the deficit is denominated in Arrow-Debreu units of accounts, i.e. money. However, it will become clear that the results do not depend on this convention and still hold for deficits denominated in real terms.

4 Equilibrium

We maintain throughout this paper some strong assumptions. We suppose perfect-foresight on the part of consumers and the government. We also suppose that the government is able to perfectly commit to its announced fiscal policy.

Next we define equilibrium in the economy with taxes.

Definition. A **competitive tax equilibrium** \((x, y, g, m, \tau, p)\). Given the sequence of endowments in primary commodities \(\omega \), the feasible fiscal policy \(m \) and \(\tau \), the exogenous consumption \(g \), the behavior of consumers and firms described by the systems (1), (2) and (3), the numeraire choice yielding \(p^n = 1 \), the (further) monetary normalization yielding \(p^m = 1 \), a competitive tax equilibrium is defined by a positive price sequence \(p \) an allocation sequence \(x \) and a production sequence \(y \) such that markets clear, so that we have
\[g^t + \sum_{h=1}^{h=n} x^t_h = \sum_{h=1}^{h=n} \omega^t_h - \sum_{j=1}^{j=J} y^1_{j,t} + \sum_{j=1}^{j=J} y^2_{j,t} \]

for \(t = 1, 2, \ldots, T \) and \(J \) includes all types of firms.

The set of equilibria is denoted \(E \). One might expect the existence of competitive equilibrium to be guaranteed in “nice” intertemporal economies, but this does not extend to our definition. There are three reasons that competitive equilibrium as defined above could fail to exist. The first reason is because we are seeking a proper monetary equilibrium, one for which the price of money is strictly positive. For a proper monetary equilibrium to exist the fiscal policy must be bona fide, i.e. there should be no outside money\(^5\). It should be noted that due to the fact that in a finite horizon economy, a necessary condition for money to have a strictly positive value is the policy to be balanced, i.e. \(\sum_{t=1}^{T} d^t = 0 \). Therefore, at an equilibrium \(d^T = -\sum_{t=1}^{T-1} d^t \).

The second reason applies only to commodity taxation. It might not be possible to equilibrate supply and demand while maintaining the positivity of the two price sequences \(p \) and \(q \). The third reason is that equilibrium may fail to exist because of excessive government consumption.

5 The social optimum

The government designs the fiscal policy in order to maximize a social welfare function. Social welfare is expected to depends on the consumption of private goods and the public good. However, as the public good is exogenously provided, it can be excluded from the welfare function without lack of generality. We also exclude consumption externalities, i.e. welfare is individualistic. Obviously, whenever the first theorem of welfare economics hold any reasonable social welfare function for dynamic economies should satisfy Pareto optimality. A very simple and perhaps even natural choice is to assume that the social welfare function is the weighted sums of the utility functions of the agents.

Definition Let \(x = (x^{sk})_{i=1}^{i=T,k=1} \ldots,l \) be a non-negative allocation and \(\lambda \) be a vector of positive weights such that \(\sum_{i=1}^{m} \lambda_i = 1 \). Then the welfare function is defined as \(W_{\lambda}(x) = \sum_{i=1}^{m} \lambda_i u_i(x_i) \).

We also need the following.

\(^5\)See Balasko and Shell [3,4,5] and Ghiglino and Shell [8].
Definition Let $\Gamma_{\tau,m}(\delta)$ be the set of allocations implementable as a competitive tax equilibrium such that the government budget deficit restriction $d^t \leq \delta^t$ is satisfied for $t \in \{1, ..., T-1\}$. In other words,

$$\Gamma_{\tau,m}(\delta) = \{x \in \mathbb{R}^{Tl_c+m}, y \in \mathbb{R}^{Tl_p} | \exists (m, \tau, p) \in \mathbb{R}^{Tl_c+m} \times \mathbb{R}^{Tl_p} \times \mathbb{R}^{Tl}$$

such that $(x, y, g, m, \tau, p) \in E$, $d^1 \leq \delta^1, d^2 \leq \delta^2, ..., d^{T-1} \leq \delta^{T-1}\}$

With the above notation, the government designs taxes and transfers as to maximize $W_\lambda(x) = \sum_{i=1}^m \lambda_i u_i(x_i)$ subject to $(x, y) \in \Gamma_{\tau,m}(\delta)$ i.e.

$$W_\lambda(\delta) = \max_{\tau,m} W_\lambda(x) \text{ s.t. } (x, y) \in \Gamma_{\tau,m}(\delta)$$

As long as there is production efficiency, for any $\lambda \in S$ with $S = \{\lambda \in \mathbb{R}^n_+ | 0 < \lambda_i < 1$ and $\sum_i \lambda_i = 1\}$ the solution to the maximization of $W_\lambda(x)$ subject to physical feasibility is the Pareto Optimal allocation associated to the welfare weights λ. On the other hand, if x is a Pareto Optimal allocation then there exists λ such that $W_\lambda(.)$ takes its maximal value at x, i.e. $x = \arg \max_y W_\lambda(y)$. Note that when the set of available tax instruments is restricted, the implementable allocation maximizing a given social welfare function is typically not Pareto Optimal even when a Pareto Optimum is implementable. A further remark is necessary at this stage. The government selects its monetary transfers in order to maximize the social welfare function, but some monetary transfers may be compatible with several equilibria. In this case monetary policies a la Grandmont (see [13]) may enable the government to select the most favorable equilibrium. In the present paper it is simply assumed that the government selects the most favorable equilibrium in case of several equilibria.

The following Lemma gives a sufficient condition such that the government reacts to a more strict GBDR with a tax scheme that keeps the social welfare unchanged (whenever this is possible).

Lemma 1 Let (x, y, g, m, τ, p) be an equilibrium with government budget deficit sequence δ. If the sequence δ' satisfies $\delta'' \leq \delta^t$ for all $t = 1, ..., T-1$ then $W_\lambda(\delta') \leq W_\lambda(\delta)$.

Proof. Suppose that $W_\lambda(\delta) < W_\lambda(\delta')$ then it exists $(\widehat{x}, \widehat{y})$ in $\Gamma_{\tau,m}(\delta')$ such that $W_\lambda(x) > W_\lambda(\widehat{x})$ for all $(\widehat{x}, \widehat{y})$ in $\Gamma_{\tau,m}(\delta)$. This can be true only if $\Gamma_{\tau,m}(\delta') \subseteq \Gamma_{\tau,m}(\delta)$. However, from the definition it is obvious that $\Gamma_{\tau,m}(\delta') \subseteq \Gamma_{\tau,m}(\delta)$.

Remark: In Lemma 1 the value of δ' in the last period is unspecified. However, at equilibrium the value of the last period government budget deficit is implicitly determined by bonaﬁdelity.
6 Irrelevance of GBDR

In the next section we focus on the conditions such that the government is able to “obey” the restrictions on its deficit without changing the social welfare. In many significant situations such irrelevance is equivalent to require that neither its own consumption nor the utility of any private consumer are affected by the GBDR. The GBDR is then said utility-irrelevant. Very often, and not only when the initial allocation is Pareto optimal, the previous notions of irrelevance boil down to require that at equilibrium the consumption remain unaffected for all agents. When this is possible the deficit restriction is said to be irrelevant. First, we recall the formal definitions given in Ghiglino and Shell [8].

Definition. Irrelevance of the deficit restriction. Let \(g \) be government consumption and let \((x, y)\) be an allocation that can be implemented as a competitive equilibrium with some feasible fiscal policy \((m, \tau)\) and with the resulting budget deficits given by the sequence \(d\). The deficit restriction \(\delta = d \) is said to be irrelevant at \((x, y)\) if for any other deficit restriction sequence \(\delta'\) there exists a feasible fiscal policy \((m', \tau')\) that implements the allocation \(x\) as a competitive equilibrium and is compatible with \(g\), but with the resulting deficit \(d'\) satisfying \(d' \leq \delta'\).

The above notion of irrelevance is very strong because it involves any possible government budget deficit sequence other than the pre-reform, or baseline, deficit \(d\). In many situations, this type of irrelevance does not obtain because the new competitive equilibrium does not exist, as explained above. In Ghiglino and Shell [8], we give a weaker notion of irrelevance. The characteristic of this notion is that only restrictions “near to” the base-line deficit are considered, i.e., only period-by-period deficits that are not too far from the baseline deficits are considered. The intent is to qualify situations in which the government budget deficit can be reduced but possibly not completely avoided.

Definition. Weak irrelevance of the deficit restriction. Let \((x, y, g, m, \tau, p)\) be a competitive equilibrium with government budget deficit \(d\). The deficit restriction \(\delta = d \) is said to be weakly irrelevant if there is a non-empty open set \(\mathcal{D}\) of \(\delta\) such that for all \(\delta' \in \mathcal{D}\) there is \((m', \tau', p')\) such that \((x, y, g, m', \tau', p')\) is a competitive equilibrium with government budget deficit \(d'\) and \(d' \leq \delta''\) for all \(t = 1, ..., T - 1\).

According to this definition, weak irrelevance ensures that at equilibrium the government budget deficit sequence can be made strictly closer to any other imposed sequence of deficits without changing the equilibrium allocation. The notion is “weak” as the deficit restriction may not be completely fulfilled. The typical situation is one in which the government budget deficit can be reduced maintaining the original equilibrium allocation but the government budget cannot be fully balanced.

Remark: In finite horizon economies equilibrium requires the fiscal policy to be balanced. This means that if \((d^1, ..., d^{T-1})\) is given, then a unique value of \(d^T\) is compatible with the equilibrium (if the equilibrium is unique). In other words, the fiscal reform focuses on a
change in the allowed budget deficit during the first $T-1$ periods. The final period T has here no economic signification, it can be viewed as the closing date of the model.

7 Irrelevance of government budget deficit restrictions: Pure exchange economies

The notion of irrelevance is central to the analysis of the effects of GBDR. Indeed, when the allocation prior to the GBDR reform maximizes the social welfare most of the times the best reaction of the government to the reform is to keep the welfare unchanged (see Lemma 1). The issue we address in this section is whether the government is able to achieve allocation irrelevance of the budget deficit restriction when consumers face credit constraints in a pure exchange economy. In absence of credit restrictions, irrelevance can easily be obtained with anonymous lump-sum taxes and transfers. However, restrictions on individual credit imply that consumers are unequally affected by anonymous lump-sum taxes and transfers. Irrelevance is then possible only if the tax scheme takes this heterogeneity implicitly into account. Due to differences in preferences and/or initial endowments, taxes that depend on individual consumptions can help to single out the consumers having access to the largest excess liquidity. We will show that with anonymous consumption taxes the possibility of irrelevance depends on the number of tax instruments compared to the number of goals (consumers) and the magnitude of the change in the budget deficit.

Example Consider a stationary two period economy ($T = 2$) with two commodities per period ($\ell = 2$), two consumers ($n = 2$) and a government consuming in the first period three units of good 1, $g^1 = (g^{11}, g^{12}) = (3, 0)$. Assume that the first consumer faces a credit restriction while the other has free access to the credit market. The constraint on Consumer 1 is that his borrowing should not exceed the present value of his second period endowment in good 2. Preferences and endowments of consumer h are given by:

$$ u_h(x_{1h}^1, x_{2h}^2) = \alpha_h \sum_{k=1}^{2} \alpha_{hk} \log x_{1h}^{1k} + (1 - \alpha_h) \sum_{k=1}^{2} \beta_{hk} \log x_{2h}^{2k} $$

with $\alpha_1 = \frac{15}{16}, \alpha_2 = \frac{1}{5}, (\alpha_{hk})_{k=1,2, h=1,2} = \begin{bmatrix} 1/4 & 3/4 \\ 1/2 & 1/2 \end{bmatrix}$, $(\beta_{hk})_{h=1,2} = \begin{bmatrix} 1/4 & 3/4 \\ 2/5 & 3/5 \end{bmatrix}$ and

<table>
<thead>
<tr>
<th></th>
<th>ω_1^{11}</th>
<th>ω_1^{12}</th>
<th>ω_1^{21}</th>
<th>ω_1^{22}</th>
</tr>
</thead>
<tbody>
<tr>
<td>agent 1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>agent 2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

The various situations are described in the table below where b_i is the individual saving and Δ_1 the present value of the collateral available to Consumer 1. The first raw corresponds
to the situation prior to the reform. The government runs a deficit in the first period and a surplus in the second period. In the second raw the government pays its consumption with a first period lump-sum tax and has a balanced budget. However, the allocation has changed. In the third raw the allocation prior to the reform is restored while there is no deficit in period 1.

<table>
<thead>
<tr>
<th>δ_1</th>
<th>δ_2</th>
<th>(x_{11}^1, x_{12}^1)</th>
<th>(x_{21}^1, x_{22}^1)</th>
<th>(x_{11}^2, x_{12}^2)</th>
<th>(x_{21}^2, x_{22}^2)</th>
<th>b_1</th>
<th>b_2</th>
<th>Δ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-3</td>
<td>(4.38, 5.00)</td>
<td>(0.84, 0.47)</td>
<td>(2.62, 1.00)</td>
<td>(9.16, 2.53)</td>
<td>-9.91</td>
<td>12.91</td>
<td>9.91</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>(4.30, 4.96)</td>
<td>(1.25, 0.67)</td>
<td>(2.70, 1.04)</td>
<td>(8.75, 2.33)</td>
<td>-11.10</td>
<td>-11.10</td>
<td>11.10</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>(4.38, 5.00)</td>
<td>(0.84, 0.47)</td>
<td>(2.62, 1.00)</td>
<td>(9.16, 2.53)</td>
<td>-21.65</td>
<td>21.65</td>
<td>21.65</td>
</tr>
</tbody>
</table>

QED

The basic intuition on the mechanism at work in the example can be gained simply by counting equations and unknowns. Because the demand of the unconstrained consumer is homogenous of degree zero in prices, there are $Tc − 1 = 2 \times 2 − 1 = 3$ equations concerning the after-tax relative consumption prices. Furthermore, there are $n = 2$ budget equations, $(T − 1)r = 1$ credit restrictions and $T = 2$ government budget equations. The total number of equations is $Tc − 1 + n + (T − 1)r + T = 8$. On the other hand, there are $T = 2$ possible lump-sum taxes and transfers, so that the number of unknowns (with $p_{11}^{11} = 1$) is given by $2Tc − 1 + T = 9$. Therefore, there are more unknowns than equations. Note that when this is the case a solution may still fail to exist simply because of the non-linearity of the system or/and because some coordinate of the solution in prices is negative. Although this last property would be consistent with the formal model it is inconsistent with free disposal of endowments. In the sequel we show that the system is linear. On the other hand, because the magnitude of the deficit restriction matter to cure the negativity problem only weak irrelevance is expected to hold.

The next proposition gives a formal general sufficient condition for weak irrelevance.

Proposition 1 Let g be government consumption and let x be an allocation that can be implemented as a competitive equilibrium with some feasible fiscal policy (m, τ) and with the resulting government deficits given by the sequence d. Let $r_t, 0 \leq r_t < n$, be the number of consumers for which the credit constraint is binding in period t. Then, if $n + \sum_{t=1}^{T-1} r_t \leq T\ell$ the deficit restriction $\delta = d$ is generically weakly allocation irrelevant.

Proof: Without lack of generality consider the same stationary economy as in the example but with general preferences and endowments. Let the price before tax of the
first good in the first period be taken as the numeraire, \(\hat{p}^{11} = 1 \). Let \((x_i^{jk})_{i=1,2}^{j=1,2} \) be the equilibrium allocation, \((\hat{p}^{sk})_{s=1,2}^{k=1,2} \) be the equilibrium price vector before the reform. Let \((\tau^{sk})_{s=1,2}^{k=1,2}, (m_s)_{s=1,2} \) be a tax scheme designed to meet the new requirement. If there is irrelevance, the government budget equations read:

\[-\sum_{k=1}^{2} (x_1^{1k} + x_2^{1k}) \tau^{1k} + 2m_1 + g^{11} = d^1.

\[-\sum_{k=1}^{2} (x_1^{2k} + x_2^{2k}) \tau^{2k} + 2m_2 = d^2 = -d^1.

At the consumer’s level, \((x_i^{jk})_{i=1,2}^{j=1,2} \) is an equilibrium allocation provided both the normalized wealths and prices remain unaffected by the policy. Let \((p^{sk})_{s=1,2}^{k=1,2} \) be the new equilibrium price vector. The following equations reflect this:

\[
(p^{12} + \tau^{12})/(1 + \tau^{11}) = \hat{p}^{12}

(p^{21} + \tau^{21})/(1 + \tau^{11}) = \hat{p}^{21}

(p^{22} + \tau^{22})/(1 + \tau^{11}) = \hat{p}^{22}

(p^1 \cdot \omega_{h}^1 + p^2 \cdot \omega_{h}^2 + m_1 + m_2)/(1 + \tau^{11}) = \tilde{p}_h^1 \cdot \omega_{h}^1 + \tilde{p}_h^2 \cdot \omega_{h}^2 + \tilde{m}_2 \quad h = 1, 2

These equations can be made linear in the unknowns \((p, \tau, m)\) by multiplication with \((1+\tau^{11})\). However, irrelevance in the presence of credit restrictions requires that Consumer 1 do not borrow more than the value of his endowments in commodity 2 in period 2. Whether this is possible or not depends on how much the consumer is required to borrow on behalf of the government.

When the borrowing constraint is binding, the difference between the first period expenditure and first period income is equal to the present value of the second period collateral, i.e.

\[
((p^1 + \tau^1) \cdot x_1^1 - p^1 \cdot \omega_{h}^1 - m_1)/p^{22} \omega_1^{22} = 1
\]

In all cases, a sufficient condition is that the difference between the first period expenditure and first period income divided by the present value of the second period collateral is a constant:

\[
((p^1 + \tau^1) \cdot x_1^1 - p^1 \cdot \omega_{h}^1 - m_1)/p^{22} \omega_1^{22} = (\tilde{p}^1 \cdot x_1^1 - \tilde{p}^1 \cdot \omega_{h}^1)/(\tilde{p}^{22} \omega_1^{22})
\]

In this example the total system is composed of 8 linear equations in \((p, \tau, m); 3\) equations concerning the normalized prices, 2 concerning the normalized incomes, the additional credit constraint on Consumer 1, and the government budget deficit equations in period 1 and 2. On the other hand, there are 9 variables; 3 commodity prices, 4 consumption taxes and two lump-sum taxes. Even tough there are more variables then
equations a solution may fail to exist because it is not assured that \(p^{sk} = q^{sk} - \tau^{sk} \) is positive, i.e. we could have for some \(s (s = 1, 2) \) and some \(k (k = 1, 2) \) that \(p^{sk} < 0 \). Consequently, the magnitude of the deficit restriction matter and only weak irrelevance is expected to hold. The proof can be easily generalized in which case the condition would be \(2T\ell + T - 1 - (T\ell - 1 + n + (T - 1)r + T) = T\ell - n - (T - 1)r \geq 0 \).

QED

Proposition 1 proposes a sufficient but not necessary condition for weak irrelevance. Indeed, there are obvious situations in which consumption taxes are not needed for week irrelevance. However, the following result holds.

Proposition 2 Assume that at a given equilibrium \((x, g, m, \tau, p)\) with government budget deficit \(d \) the GBDR is binding in some period and that \(n + \sum_{t=1}^{T-1} r_t > n > T\ell \). Then the GBDR \(\delta = d \) is generically weakly allocation relevant.

Note that the analysis shows that there are situations in which the use of consumption taxes allows to implement allocations that would not be feasible with anonymous lump-sum instruments.

8 Irrelevance of government budget deficit restrictions: Production Economies

As shown in the previous section, in pure exchange economies a sufficiently large number of consumption tax instruments ensures weak irrelevance. A brief look at the proof shows that the mechanism requires some of the prices involved in the income side of the individual budget constraint to be free. Introducing smooth production in a pure exchange economy is not innocuous because then the prices paid by the producers for the inputs admit a unique normalization. This eliminates most of the degrees of freedom required in the income part of the individual budget constraint. The assumption of smoothness of the production possibility frontier is crucial for this impossibility result to occur. Indeed, non-substitutability in inputs produces the kind of indeterminacy leading to irrelevance. Moreover, as weak irrelevance is a local concept, the existence of kinks in the production frontier related to some of the inputs is sufficient. Of course full non-substitutability is not a realistic concept but this result indicates that when sufficient inputs have a small degree of substitutability at some point, consumption taxes enable the government to keep the welfare effects of the reform small.

8.1 Non-substitution in production: an example
Assume that there are five non-substitutable inputs which are used in conjunction with one substitutable “labor” input by two infratemporal firms. Let commodity 6 be the substitutable input, and commodities 7 and 8 be the produced consumption goods. Assume furthermore that inputs 1 to 5 are non-substitutable in both types of firms. The production function for a firm of sector i that produces good i using inputs and outputs of the same period can be written as

$$F^i(x_{it}) = F^i(\min[x_{it}^1, x_{it}^2/c_i^2, ..., x_{it}^5/c_i^5], x_{it}^6) \quad (2)$$

Due to the non-substitutability property in these sectors and independently of the relative prices of these inputs, the actual production plan is such that

$$x_{it}^1 = x_{it}^2/c_i^2 = ... = x_{it}^5/c_i^5 \quad (3)$$

The program of the firm is then to maximize profits

$$\text{maximize } p^i_t F^i(x_i) - x_{it}^1 p^1_t c_i^1 - p^6_t x_{it}^6 \quad (4)$$

The first order conditions are

$$p^i_t \frac{dF^i}{dx_i^k} = p^6_t \quad \text{for all } i \in \{7, 8\}$$
$$p^i_t \frac{dF^i}{dx_i^1} = \sum_{k=1}^5 c_i^k p^k_t \quad \text{for all } i \in \{7, 8\} \quad (5)$$

These conditions imply that for a given consumption plan, once any of the prices of the substitutable inputs is fixed, the prices of the substitutable input, p^6, and of the two outputs, p^7 and p^8, are also fixed. Similarly, if one output price is given then all other output and substitutable input prices are determined. The presence of a common substitutable input across the consumption sectors links all output prices, leaving only one degree of freedom. More degrees of freedom could be obtained if the consumption sectors would be disconnected. For example, one could expect that if there are four consumption sectors separated in two disconnected groups with no overlap in the substitutable inputs then a two-dimensional degree of freedom is possible.

Concerning the non-substitutable inputs, only the sum $\sum_{k=1}^5 c_i^k p_i^k$ is determined. As these conditions hold for every firm, whenever inputs are not substitutable in all sectors the only condition on the relevant prices is related to their sum. The prices of these inputs are then undetermined as these are only linked by two linear equations.

We assume that there is also an intertemporal firm using non-substitutable inputs 4 and 5 from the previous period together with current divisible labor to produce current commodity 5. Let

$$y_2^5 = G_2^5(x_1^4, x_1^5, x_2^6)$$

Profit maximization provides a link between the two periods.
\[
p_2^5 \frac{dC_2^5}{dx_2} = p_1^4 + C_2^5 p_1^5
\]
\[
p_2^6 \frac{dC_2^6}{dx_2} = p_2^6
\]

Here \(p_1^5\) and \(p_2^5\) are linked but there is some "freedom". We have seen that infratemporal production leaves unrestricted on top of \(p_1^1 = 1\) and \(p_1^7\) two other prices, for ex. \(p_1^4\) and \(p_1^5\). Use \(p_1^4\) for this while \(p_1^5\) is kept for later use. This implies that the price of the smooth input \(p_2^5\) is not uniquely determined and consequently that of the smooth input 6. Taking into account that there are two periods, the supply side of the economy provides \(4 + 4 + 2 = 10\) equations.

We assume the government uses a given quantity \(g_1^1\) of good 1 in the first period to produce the public good. We also assume that prior to the reform the government runs a deficit in the first period. The debt is paid back in the second period with a lump sum tax \(m_2\) which also covers second period consumption. Assume that a restriction on the government budget deficit is put in place: the first period budget is required to be balanced.

There are two consumers. The first consumer faces a credit restriction while the other has free access to the credit market. The constraint on Consumer 1 is that his borrowing should not exceed the present value of his second period endowment in good 2. Let \((x_{ij}^k)_{k=7,8, i=1,2, j=1,2}\) be the equilibrium allocation, \((\hat{p}_s^k)_{s=1,2, k=7,8}\) be the equilibrium price vector before the reform. Let \((\tau_s^k)_{s=1,2, k=7,8}, (m_s)_{s=1,2}\) be a tax scheme designed to meet the new requirement. If there is irrelevance, the government budget equations read:

\[
- \sum_{k=7}^{8} (x_{11}^k + x_{21}^k) \tau_1^k + 2m_1 + p_1^4 g_1^1 = 0
\]
\[
- \sum_{k=7}^{8} (x_{12}^k + x_{22}^k) \tau_2^k + 2m_2 = 0
\]

At the consumer’s level, \((x_{ij}^k)_{k=7,8, i=1,2, j=1,2}\) is an equilibrium allocation provided both the normalized wealths and prices remain unaffected by the policy. Let \((p_s^k)_{s=1,2, k=7,8}\) be the new equilibrium price vector. The following five equations reflect this:

\[
\frac{(p_1^8 + \tau_1^8)}{(p_1^7 + \tau_1^7)} = \frac{\hat{p}_1^8}{\hat{p}_1^7}
\]
\[
\frac{(p_2^8 + \tau_2^8)}{(p_2^7 + \tau_2^7)} = \frac{\hat{p}_2^8}{\hat{p}_2^7}
\]
\[
\frac{(p_3^8 + \tau_3^8)}{(p_3^7 + \tau_3^7)} = \frac{\hat{p}_3^8}{\hat{p}_3^7}
\]
\[
\frac{(p_1 \cdot \omega_{h1} + p_2 \cdot \omega_{h2} + m_1 + m_2)}{(p_1^7 + \tau_1^7)} = \frac{W^n_h(\hat{p}/\hat{p}_1^7)}{(\tilde{p}_1 \cdot \omega_{h1} + \tilde{p}_2 \cdot \omega_{h2} + m_2)/\hat{p}_1^7} \quad h = 1, 2
\]
There are five equations. The first three involve eight possible unknowns. However, counting equations and unknowns is misleading. From the supply side, once p_{71}' is chosen p_{81}' is determined. The first equation above then gives τ_{18}' as a function of τ_{17}'. In short, $\tau_{18}'(\tau_{17}', p_{71}')$. The government budget deficit reads

$$-(x_{71}^7 + x_{21}^7)\tau_{17}' - (x_{71}^8 + x_{21}^8)\tau_{18}'(\tau_{17}', p_{71}') + 2m_1 + p_{11}'y_1 = 0.$$

Assume, all first period variables are fixed. In second period, once p_{72}' is chosen p_{82}' is determined. So, the second and third equations above give $\tau_{27}'(p_{72}')$ and $\tau_{28}'(p_{72}'(\tau_{27}'))$. Then a right choice of τ_{27}' should allow to fulfill the second period government budget deficit equation

$$-\sum_{k=7}^{8} (x_{12}^k + x_{22}^k)\tau_{2k}' + 2m_2 = 0.$$

Finally, we need to consider the two individual budget constraints. In period 1, p_{71}' is still available while in period 2, p_{32}' and p_{42}' are still available. As we have three degrees of freedom plus two free lump-sum transfers, the two individual budget constraints may be adjusted. Irrelevance is therefore feasible in this example.

Remarks: The previous example has a striking property: no commodity can both be used as inputs and be consumed. A leading example of such a commodity is labor. Importantly, such commodities will appear on both sides of the individual budget constraint. In principle, such a commodity could be substitutable or non-substitutable and could be taxable or not taxable. A natural case is one in which there is a substitutable, not taxable, input that is also consumed by the agents. How the previous example would be affected by the fact that commodity 6 could also be consumed? This question calls for further research. Another specificity of the example is that the infratemporal firms only produce consumption goods. How would the results be modified by the introduction of infratemporal firms producing goods that can be used by other firms as an input within the same period? It is likely that the results would remain valid.

The previous example illustrates some important facts. First, the existence of at least one substitutable input implies that all the relative price of the consumption goods charged by the consumers are linked, and this even in the presence of non-substitutable inputs. However, the price level of the consumption goods is still free provided one of the non-substitutable goods is chosen as numeraire. Another effect of the non-substitutability of inputs is that the prices at which the consumers sell their endowments has still numerous degrees of freedom after all the constraints pertaining to the supply side are taken into account. This is crucial to achieve irrelevance as then the normalized individual wealths and the borrowings may be kept unchanged. These remarks are used to obtain the general conditions for irrelevance.
8.2 The general case

Consider economies in which the consumption commodities are primary commodities or are produced by infratemporal firms. Assume also that capital commodities are primary commodities or are produced by intertemporal firms. Assume that all consumers are concerned by the totality of the consumption goods and have initial endowments in the same set of goods. These may include inputs as well as endowments of the consumption goods: let \(l_c \) endowments in the producible goods, as the consumption goods, and \(l_i \) endowments in pure input goods. In economies of pure exchange, when the number of consumers with a binding credit constraints in period \(t \) is \(r_t \) the condition for irrelevance is \(Tl_c - 1 + n + \sum_{t=1}^{T-1} r_t + T \leq 2Tl_c + T - 1 \) (see Proposition 1). In that case, \(l_c \) is the number of consumption goods. When there is production the condition is more subtle. We first need the following.

Definition Let \(i_k \) be the number of substitutable inputs used in production of output \(k \). Then define \(N^t = \sum_{k=1}^{l_p}(i_k + 1) \) and \(N^{t,t+1} = \sum_{k=1}^{l_p}(i_k^{t,t+1} + 1) \).

In a given sector all non-substitutable inputs can be “aggregated” in a single input in the sense that only equations related to the marginal productivity of this composite input need to be considered. This appears as a ”1” in the above definition. The total number of equations implied by profit maximization of the infratemporal firms is \(N^t \). Intertemporal firms produce \(N^{t,t+1} \) further equations. Altogether, there are \(N^{t-1,t} + N^{t,t} \) equations characterizing the supply sector in period \(t \). There are also \(n + \sum_{t=1}^{T-1} r_t \) budget and credit equations. The total number of equations is then \(Tl_c - 1 + \sum_{t=1}^{T} N^t + \sum_{t=1}^{T-1} N^{t,t+1} + n + \sum_{t=1}^{T-1} r_t + T - 1 \). On the other hand, there are \(2Tl_c \) prices and taxes associate to consumption goods, \(T(l - l_c) \) prices of the non-consumable goods, and \(T \) lump-sum taxes and \(-1 \) due to the normalization. The total degrees of freedom is \(Tl_c + Tl + T - 1 \). Provided the relevant matrices are full rank there is local irrelevance whenever \(Tl_c - 1 + \sum_{t=1}^{T} N^t + \sum_{t=1}^{T-1} N^{t,t+1} + n + \sum_{t=1}^{T-1} r_t + T \leq T + T(l + l_c) - 1 \) or more simply \(\sum_{t=1}^{T} N^t + \sum_{t=1}^{T-1} N^{t,t+1} + n + \sum_{t=1}^{T-1} r_t \leq Tl \). In the previous example we see that \(N^1 = N^2 = 2 + 2 = 4, N^{1,2} = 2, n = 2, r = 1, T = 2 \) and \(l = 8 \). So the relation is fulfilled with equality as there are 13 equations left and 16 unknowns. The next proposition, gives a general sufficient condition for weak irrelevance.

Proposition 3 Let \(g \) be government consumption and let \(x \) be an allocation that can be implemented as a competitive equilibrium with some feasible fiscal policy \((m, \tau) \) and with the resulting government deficits given by the sequence \(d \). Let \(N^t \) and \(N^{t,t+1} \) as defined above and let \(r_t, 0 \leq r_t < n, \) be the number of consumers for which the credit constraint is binding in period \(t \). Then if \(\sum_{t=1}^{T} N^t + \sum_{t=1}^{T-1} N^{t,t+1} + n + \sum_{t=1}^{T-1} r_t \leq Tl \) the deficit restriction \(\delta = d \) is generically weakly allocation irrelevant.

Note that even when there are more variables than equations, a solution may fail to exist because the system is non-linear. However, as in the case of pure exchange the system of equations can be transformed into a linear system. On the other hand, it is not assured.
that \(p^{sk} \) is positive as only \(p^{sk} + \tau^{sk} \) is constrained to be positive. The fact that for some \(s (s = 1, 2) \) and some \(k (k = 1, 2) \) \(p^{sk} < 0 \) would be consistent with the formal model, but is inconsistent with free disposal of endowments. Consequently, the magnitude of the deficit restriction matter and only weak irrelevance is expected to hold.

As in the pure exchange case Proposition 3 states a set of sufficient conditions for weak irrelevance. Sufficient conditions for weak relevance can also be stated. Indeed, the following result holds.

Proposition 4 Assume that at a given equilibrium \((x, y, g, m, \tau)\) with government budget deficit \(d\) the GBDR is binding in some period and that
\[
\sum_{t=1}^{T} N^t + \sum_{t=1}^{T-1} N^{t+1} + n + \sum_{t=1}^{T-1} r_t > T \ell,
\]
then the GBDR \(\delta = d \) is generically weakly allocation relevant.

A trivial case for irrelevance is one in which the GBDR do not bind in any period. There are also obvious situations in which consumption taxes are not needed to achieve weak irrelevance, for example when agents do not face a binding credit constraint. Indeed, in this case a lump-sum tax and transfer scheme is sufficient to satisfy locally the new GBDR.

9 Welfare analysis and optimal taxation

In this section we address the main question of the paper: what are the effects of GBDR reforms on the social welfare and on the composition of the optimal tax. Since our focus is on the effect of a GBDR reform, we assume that prior to the reform the equilibrium allocation \(x\) maximizes the social welfare function \(W(x)\) subject to the implementability constraint \(x \in \Gamma_{\tau,m}(\delta)\). Let the sequence after the GBDR reform be \(\delta'\) and assume that the GBDR is more restrictive after the reform, i.e. \(\Gamma_{\tau,m}(\delta') \subseteq \Gamma_{\tau,m}(\delta)\). According to Lemma 1, the optimal reaction of the planner is to modify the tax scheme as to guarantee the same social welfare as prior to the reform, whenever this is possible. Note that as the set of available instruments has not changed, welfare irrelevance is generically equivalent to allocation and utility irrelevance.

Consider first the situation in which prior to the reform the implemented allocation both maximizes the welfare function and is Pareto-optimal. Such a case is illustrated by the following example. Note that in the absence of distortionary taxes, any allocation such that both the individual credit constraints and the government budget deficit restriction are not binding is Pareto-Optimal. However, there is little chance that this allocation maximizes an arbitrarily chosen social welfare function.

Example. Reconsider the example of the previous section but with \(\alpha_1 = 1/2\). In the initial situation there is no taxation in the first period while a lump-sum tax is applied in the
second period to ensure bona fi
delity, i.e. a strictly positive price for money. Consequently,
the government finances the production of the public good by running a deficit in the first
period. From the actual calculations it appears that no individual credit restriction is
binding and the equilibrium is Pareto Optimal. This allocation maximizes the sum of the
utility of the two agents weighted by the welfare weights associated to the given Pareto
Optimum. Suppose that a new regulation requires a balanced first period government
budget. What is the impact on the maximal achievable social welfare? In the first scenario
the government proceeds to a lump-sum tax in period 1 in order to meet the requirement.
As a result, Consumer 1 credit restriction binds, the equilibrium allocation is modified
and social welfare is reduced. In the second scenario a sufficiently rich consumption tax
is applied that allows for allocation, and therefore welfare, irrelevance. The values are
reported in the table below where u_1 and u_2 are the utilities while W is the social welfare.

<table>
<thead>
<tr>
<th>$\delta_1 = 3$</th>
<th>$\delta_2 = -3$</th>
<th>no taxes in 1</th>
<th>b_1</th>
<th>b_2</th>
<th>Δ_1</th>
<th>u_1</th>
<th>u_2</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{11}^{11}</td>
<td>x_{12}^{11}</td>
<td>x_{11}^{21}</td>
<td>x_{12}^{21}</td>
<td>x_{22}^{22}</td>
<td>x_{21}^{22}</td>
<td>b_1</td>
<td>b_2</td>
<td>Δ_1</td>
</tr>
<tr>
<td>3.84</td>
<td>4.71</td>
<td>2.75</td>
<td>1.29</td>
<td>3.16</td>
<td>1.29</td>
<td>7.25</td>
<td>1.71</td>
<td>-7.91</td>
</tr>
<tr>
<td>$\delta_1 = 0$</td>
<td>$\delta_2 = 0$</td>
<td>lump-sum in 1</td>
<td>b_1</td>
<td>b_2</td>
<td>Δ_1</td>
<td>u_1</td>
<td>u_2</td>
<td>W</td>
</tr>
<tr>
<td>4.30</td>
<td>4.96</td>
<td>1.25</td>
<td>0.67</td>
<td>2.70</td>
<td>1.04</td>
<td>8.75</td>
<td>2.33</td>
<td>-11.10</td>
</tr>
<tr>
<td>$\delta_1 = 0$</td>
<td>$\delta_2 = 0$</td>
<td>consum. taxes</td>
<td>b_1</td>
<td>b_2</td>
<td>Δ_1</td>
<td>u_1</td>
<td>u_2</td>
<td>W</td>
</tr>
<tr>
<td>3.84</td>
<td>4.71</td>
<td>2.75</td>
<td>1.29</td>
<td>3.16</td>
<td>1.29</td>
<td>7.25</td>
<td>1.71</td>
<td>-92.92</td>
</tr>
</tbody>
</table>

QED

The general result concerning the effects on social welfare of a reform in GBDR is a con-
sequence of Proposition 3. Indeed, Proposition 3 gives sufficient conditions for allocation
irrelevance which can be translated into the following sufficient conditions guaranteeing
that a reform in the government budget deficit restriction has no effect on maximal at-
tainable welfare.

Corollary 3 Let g be government consumption and let x be an allocation that can be
implemented as a competitive equilibrium with some feasible fiscal policy (m, τ) and with
the resulting government deficits given by the sequence d. Let N_t and $N_{t,t+1}^{f}$ as defined
above and let $r_t, 0 \leq r_t < n$, be the number of consumers for which the credit constraint
is binding in period t. Then if $\sum_{t=1}^T N_t + \sum_{t=1}^{T-1} N_{t,t+1} + n + \sum_{t=1}^{T-1} r_t \leq T \ell$ the deficit
restriction $\delta = d$ is generically weakly welfare irrelevant.

The previous results give sufficient but not necessary condition. Indeed, it is easy to find
economies for which welfare irrelevance is obtained under weaker conditions as for example
when the initial GBDR does not bind. The conditions for GBDR welfare relevance can
be given in the case considered in Proposition 4.
Corollary 4 Assume that at a given equilibrium \((x, y, g, m, \tau)\) with government budget deficit \(d\) the GBDR is binding in some period and that \(\sum_{t=1}^{T} N^{t} + \sum_{t=1}^{T-1} N^{t+1} + n + \sum_{t=1}^{T-1} r_{t} > T\ell\), the GBDR is binding in some period and there exists \(t\) such that \(r_{t} > 0\) then the GBDR \(\delta = d\) is generically weakly welfare allocation relevant.

Achieving full welfare irrelevance may be desirable but is clearly often unfeasible. For example, the number of tax instruments could be insufficient, as in Corollary 4, or inputs could be substitutable although scarcely so. When a sufficient number of inputs is only slightly substitutable the gain from reducing the inefficiency due to the constraints is expected to overcome the cost associated to the distortion induced by the consumption taxes. In this case there is relevance but still the consumption taxes are used

Proposition 5 There exist an open set of economies such that the optimal tax scheme includes consumption taxes.

The previous analysis focused the possibility to keep the same social welfare in spite of the reform on the GBDR. This leaves several open issues. First, are there relevant reforms such that welfare irrelevance is not desirable? This is an open question. Another issue is how production inefficiency would affect the results. We deal with this question in the next section.

10 Production Efficiency

The taxes analyzed so far are taxes on the transactions between the consumption sector and the production sector (note that household are schizophrenic, when they sell their endowments they are considered as producers). As production is assumed to suffer no distortions, competition ensures that the economy is on a point on the production possibility frontier. However, it is not unusual that the government has access to policies distorting production through taxes or indirectly through allocation schemes. One may expect that such instruments would be included in the optimal tax. Is this true? and if the optimal scheme generate production inefficiencies how the scheme is affected by a change in the government budget deficit restriction?

In our framework, production inefficiency may origin in several ways. Some of the produced goods may be used as inputs by other firms next period, an example being capital. Taxes on these goods clearly destroy production efficiency. Can an optimal tax scheme include such taxes? This question is reminiscent of the standard issue concerning factor income taxation. Chamley (1986) has shown that a the steady state such taxes are not optimal. However, this result is obtained in infinite horizon economies and without borrowing constraints. Chamley (2001) considers this issue in a finite horizon model with borrowing constraints and shows that the result fails. In view of these results we expect that the optimal tax scheme may include in some cases taxes on inputs used by the
intertemporal firms, in particular when other instruments are lacking. The outcome in these cases would be intertemporal inefficient.

As we formalized the model, infratemporal firms only produce consumption goods which are not used as inputs. This eliminates the possibility of inefficiency due to taxation on intermediate goods. Including infratemporal firms producing commodities that can be used as inputs by firms in the same period would allow the use of intermediate good taxation a la Diamond and Mirrlees (1971). However, the no intermediate taxation result requires that all commodities can be taxed. If some inputs are not taxed the loss associated to inefficiency may be more than compensated by the gain due to redistribution.

In the presence of production inefficiency Lemma 1 would still hold. The sufficient conditions for irrelevance would also be valid. On the other hand all results stating necessary conditions need to be reconsidered. Indeed, in the presence of inefficiency, nothing excludes that the optimal allocation \((x, y)\) is a manifold of some strictly positive dimension. As a full command of allocations is not anymore required to attain irrelevance, a smaller number of tax instruments than the one with full efficiency may be required. The exact number of course depends on the dimension of the set of optimal allocations. However, as there is no general result we cannot give general necessary conditions for welfare irrelevance when the set of instruments is extended beyond lump-sum taxes and transfers and taxes on consumption.

11 Conclusion

The supply of public goods is generally financed by taxes. At first sight, any optimal tax scheme seems to consist of lump-sum taxes and transfers. However, individualized taxes are too costly so that a large degree of anonymity is a necessary condition for feasibility. Furthermore, the scheme is subject to further constraints. Indeed, the government budget deficit is usually restricted by law and individual credit markets are rarely perfect. In this situation, the Ricardian equivalence fails and the timing of taxation becomes relevant. What is the composition of the optimal tax scheme then? In the present study we individuate a factor that might induce governments to refrain from using exclusively lump-sum taxes. We find that in many circumstances a benevolent government would react to a change in the deficit restriction imposed on its budget by using consumption taxes rather than lump-sum taxes. This feature agrees somewhat with the observation that governments rarely use lump-sum taxes or at least never use them exclusively.
References (not complete)

