Economics 732: Monetary Economics II
Spring 2003
Cornell University

Problem Set # 7

1. Two-sector model:

\[Y_2 = \frac{K_2^{1/3} L_2^{2/3}}{3} \] and
\[Y_1 = 9K_1^{2/3} L_1^{8/3} \]

Draw precisely the Harrod-Johnson diagram. Compute the incomplete specialization prices.

2. “Keynesian” Deficit Model:

\[c = (1 - s) [f(k) + \delta], \]
\[\Delta = n\Delta, \]
\[f(k) = 3k^{1/8}, \ s = 1/10. \]

Plot steady-state \(k \) versus steady-state \(\Delta \). Plot steady-state \(c \) versus steady-state \(\Delta \). [Calculate \(k^* \), the golden-rule capital-labor ratio, and \(\tilde{k} \), the maximum-sustainable capital-labor ratio.]

3. Inventive Activity and Growth:

\[C + Z = AK_1^{1/3} L_1^{2/3}, \]
\[R = 7AK_2^{3/2} L_2^{7/2}, \]
\[K_1 + K_2 = K, \ L_1 + L_2 = L = 1, \]
\[wL_2 + rK_2 = \tau AK_1^{1/3} L_1^{2/3}, \]
\[C = (1 - s)(1 - \tau)K_1^{1/3} L_1^{2/3}, \]
\[Z = s(1 - \tau)AK_1^{1/3} L_1^{2/3}, \]

\(s \) and \(\tau \) are fixed positive fractions,

\[\dot{K} = Z - \mu K, \]
\[\dot{A} = R - \rho A. \]

Draw the phase diagram. Describe the dynamics. If the production functions are perturbed, are the dynamics altered?